
Journal of Computational Physics 229 (2010) 2159–2178
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
On optimal solution error covariances in variational data
assimilation problems

I.Yu. Gejadze a, F.-X. Le Dimet b, V. Shutyaev c,*

a Department of Civil Engineering, University of Strathclyde, 107 Rottenrow, Glasgow G4 ONG, UK
b MOISE Project (CNRS, INRIA, UJF, INPG); LJK, Université Joseph Fourier, BP 51, 38051 Grenoble Cedex 9, France
c Institute of Numerical Mathematics, Russian Academy of Sciences, 119333 Gubkina 8, Moscow, Russia
a r t i c l e i n f o

Article history:
Received 14 July 2009
Received in revised form 16 November 2009
Accepted 18 November 2009
Available online 24 November 2009

Keywords:
Variational data assimilation
Parameter estimation
Optimal solution error covariances
Hessian preconditioning
0021-9991/$ - see front matter � 2009 Published b
doi:10.1016/j.jcp.2009.11.028

* Corresponding author. Tel.: +7 495 9383758; fa
E-mail address: shutyaev@inm.ras.ru (V. Shutyae
a b s t r a c t

The problem of variational data assimilation for a nonlinear evolution model is formulated
as an optimal control problem to find unknown parameters such as distributed model coef-
ficients or boundary conditions. The equation for the optimal solution error is derived
through the errors of the input data (background and observation errors), and the optimal
solution error covariance operator through the input data error covariance operators,
respectively. The quasi-Newton BFGS algorithm is adapted to construct the covariance
matrix of the optimal solution error using the inverse Hessian of an auxiliary data assim-
ilation problem based on the tangent linear model constraints. Preconditioning is applied
to reduce the number of iterations required by the BFGS algorithm to build a quasi-Newton
approximation of the inverse Hessian. Numerical examples are presented for the one-
dimensional convection–diffusion model.

� 2009 Published by Elsevier Inc.
1. Introduction

The methods of data assimilation (DA) have become an important tool for analysis of complex physical phenomena in
various fields of science and technology. These methods allow us to combine mathematical models, data resulting from
instrumental observations and a priori information. The problems of variational DA can be formulated as optimal control
problems (e.g. [10,12]) to find unknown model parameters such as initial and/or boundary conditions, right-hand sides in
the model equations (forcing terms), and distributed coefficients. A necessary optimality condition reduces an optimal con-
trol problem to an optimality system which includes inexact input functions; hence the error in the optimal solution. In this
paper, assuming a perfect model, we consider two types of input errors: the background error and the observation error. It is
an important theoretical and practical task to evaluate statistical properties of the optimal solution error. For example, its
covariance can be used for estimating the efficiency of DA in terms of reducing uncertainty in model parameters and, there-
fore, in the model output.

The error in the optimal solution can be derived through the errors in the input data using the Hessian of an auxiliary DA
problem [6,11]. If errors in the input data are random and subjected to the normal distribution, then for a linearized finite-
dimensional problem (tangent linear approximation of the discretized model) the covariance matrix of the analysis (optimal
estimation of the initial condition) error is given by the inverse of the Hessian matrix of the cost functional (see e.g.
[7,9,17,21,22]). In [6], a similar result was obtained for the continuous (both in time and space) operator formulation. We
have shown that in the nonlinear case the analysis error covariance operator can be approximated by the inverse Hessian
y Elsevier Inc.
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of the auxiliary DA problem based on the tangent linear model (TLM) constraints. We have also demonstrated that this
approximation could be sufficiently accurate even though the tangent linear hypothesis is not valid.

This paper presents a generalization of the theoretical results reported in [6] to parameter estimation problems for a non-
linear evolution model. These problems are common inverse problems considered in geophysics [20,25] and in engineering
applications [1]. Here we derive the relationship between the optimal solution error covariance and the inverse Hessian of
the auxiliary DA problem in a continuous operator form. The algorithm based on the quasi-Newton BFGS method (also re-
ported in [6]) is adapted for constructing the optimal solution error covariance matrix for parameter estimation problems.
This process is greatly accelerated by preconditioning the Hessian of the auxiliary DA problem, whereas the preconditioner is
also defined in a general operator form.

For numerical analysis we use the one-dimensional (1D) nonlinear convection–diffusion model. The algorithm was ap-
plied to compute the covariance matrix for the diffusion coefficient and boundary flux estimation problems. The numerical
results reveal interesting features of these problems in terms of identifiability, even for a simple evolution model. All numer-
ical results have been verified using the fully nonlinear ensemble method [6]. Thus, we confirm that in the nonlinear case the
optimal solution error covariance can be approximated by the inverse Hessian of the auxiliary DA problem (‘H-covariance’)
beyond the validity of the tangent linear hypothesis.

The generalization of the theoretical results to the case of model errors is given in [19]. The relevant work discussing an
estimate of posterior error fields in DA is given in [18].

This paper is organized as follows. In Section 2, we give the statement of the variational DA problem for a nonlinear evo-
lution model to estimate the model parameters. In Section 3, the equation for the optimal solution error is derived through
the errors of the input data. In Section 4 we derive the formulas for the optimal solution error covariance operator through
the covariance operators of the input data errors using the Hessian of the auxiliary DA problem. A general case is considered
in Section 4.1. Then, it is illustrated by the examples given for the 1D convection–diffusion model: the diffusion coefficient
estimation problem is considered in Section 4.2 and the boundary flux estimation problem in Section 4.3. Details of numer-
ical implementation are presented in Section 5 (for basic implementation details we also refer to [6]). We describe: in Sec-
tion 5.1 a method for specifying the background error covariance matrix, in Section 5.2 – the preconditioning of the Hessian
of the auxiliary DA problem and in Section 5.3 – other relevant implementation issues. Numerical analysis is presented in
Section 6. In Section 6.1 we analyse the diffusion coefficient estimation problem, in Section 6.2 – the boundary flux estima-
tion problem. In Section 6.3 we compare the convergence rates achieved with and without preconditioning for some numer-
ical tests performed earlier. The main results are discussed in the Conclusions.

From this point on we shall refer to ‘optimal solution error covariance/variance’ simply as ‘covariance/variance’.

2. Statement of the problem

Consider the mathematical model of a physical process that is described by the evolution problem
@u
@t ¼ Fðu; kÞ þ f ; t 2 ð0; TÞ;
ujt¼0 ¼ u;

(
ð2:1Þ
where u ¼ uðtÞ is the unknown function belonging for any t to a Hilbert space X;u 2 X; F is a nonlinear operator mapping
Y � Yp into Y with Y ¼ L2ð0; T; XÞ; k � kY ¼ ð�; �Þ

1=2
Y ;Yp is a Hilbert space (space of control parameters, or control space),

f 2 Y . Suppose that for given u 2 X; f 2 Y and k 2 Yp there exists a unique solution u 2 Y to (2.1). The function k is an un-
known model parameter.

Let us introduce the functional
SðkÞ ¼ 1
2

V1ðk� kbÞ; k� kbð ÞYp
þ 1

2
V2ðCu�uobsÞ; Cu�uobsð ÞYobs

; ð2:2Þ
where kb 2 Yp is a prior (background) function, uobs 2 Yobs is a prescribed function (observational data), Yobs is a Hilbert space
(observation space), C : Y ! Yobs is a linear bounded observation operator, V1 : Yp ! Yp and V2 : Yobs ! Yobs are symmetric
positive definite bounded operators.

Let us consider the following DA problem with the aim to estimate the parameter k: for given u 2 X; f 2 Y , find k 2 Yp and
u 2 Y such that they satisfy (2.1), and on the set of solutions to (2.1), the functional SðkÞ takes the minimum value, i.e.
@u
@t ¼ Fðu; kÞ þ f ; t 2 ð0; TÞ;
ujt¼0 ¼ u;

SðkÞ ¼ inf
v2Yp

SðvÞ:

8>><>>: ð2:3Þ
We suppose that the solution of (2.3) exists. Let us note that the solvability of the parameter estimation problems (or iden-
tifiability) has been addressed, e.g., in [2,14]. To derive the optimality system, we assume the solution u and the operator
Fðu; kÞ in (2.1) and (2.2) are regular enough, and for v 2 Yp find the gradient of the functional S with respect to k:
S0ðkÞv ¼ ðV1ðk� kbÞ;vÞYp
þ ðV2ðCu�uobsÞ;C/ÞYobs

¼ ðV1ðk� kbÞ;vÞYp
þ ðC�V2ðCu�uobsÞ;/ÞY ; ð2:4Þ
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where / is the solution to the problem:
@/
@t ¼ F 0uðu; kÞ/þ F 0kðu; kÞv ; t 2 ð0; TÞ;

/jt¼0 ¼ 0;

(
ð2:5Þ
Here F 0uðu; kÞ : Y ! Y ; F 0kðu; kÞ : Yp ! Y are the Frechet derivatives of F with respect to u and k, correspondingly, and C� is
the adjoint operator to C defined by ðCu;wÞYobs

¼ ðu;C�wÞY ; u 2 Y; w 2 Yobs.
Let us consider the adjoint operator ðF 0uðu; kÞÞ

� : Y ! Y and introduce the adjoint problem:
� @u�
@t � ðF

0
uðu; kÞÞ

�u� ¼ �C�V2ðCu�uobsÞ; t 2 ð0; TÞ;
u�jt¼T ¼ 0:

(
ð2:6Þ
Then (2.4) with (2.5) and (2.6) gives
S0ðkÞv ¼ ðV1ðk� kbÞ;vÞYp
� ðu�; F 0kðu; kÞvÞY ¼ ðV1ðk� kbÞ; vÞYp

� ððF 0kðu; kÞÞ
�u�;vÞYp

; ð2:7Þ
where ðF 0kðu; kÞÞ
� : Y ! Yp is the adjoint operator to F 0kðu; kÞ. Therefore, the gradient of S is defined by
S0ðkÞ ¼ V1ðk� kbÞ � ðF 0kðu; kÞÞ
�u�:
From (2.4)–(2.6) and (2.7) we get the optimality system (the necessary optimality conditions):
@u
@t ¼ Fðu; kÞ þ f ; t 2 ð0; TÞ;

ujt¼0 ¼ u;

(
ð2:8Þ

� @u�
@t � ðF

0
uðu; kÞÞ

�u� ¼ �C�V2ðCu�uobsÞ; t 2 ð0; TÞ;

u�jt¼T ¼ 0;

(
ð2:9Þ

V1ðk� kbÞ � ðF 0kðu; kÞÞ
�u� ¼ 0: ð2:10Þ
We assume that the system (2.8)–(2.10) has a unique solution. Suppose that kb ¼ �kþ n1; uobs ¼ C �uþ n2, where
n1 2 Yp; n2 2 Yobs, and �u is the (‘‘true”) solution to the problem (2.1) with k ¼ �k:
@ �u
@t ¼ Fð �u; �kÞ þ f ; t 2 ð0; TÞ;
�ujt¼0 ¼ u:

(
ð2:11Þ
The functions n1; n2 represent the errors of the input data kb and uobs (background and observation error, respectively).
If the observation operator C is nonlinear, i.e. Cu ¼ CðuÞ, then the right-hand-side of the adjoint Eq. (2.9) contains ðC0uÞ

�

instead of C0� and all the analysis presented below is similar.
3. Equation for the optimal solution error

Let us derive the equation for the optimal solution error through the input data errors. Let du ¼ u� �u; dk ¼ k� �k. Let us
suppose that F is continuously Frechet differentiable, and then there exist ~u ¼ �uþ sðu� �uÞ; ~k ¼ �kþ sðk� �kÞ; s 2 ½0;1�;
such that the Taylor–Lagrange formula [13] is valid: Fðu; kÞ � Fð�u; �kÞ ¼ F 0uð ~u; ~kÞduþ F 0kð ~u; ~kÞdk. Then, from (2.11) and the
optimality system (2.8)–(2.10), we obtain
@du
@t � F 0uð ~u; ~kÞdu ¼ F 0kð ~u; ~kÞdk; t 2 ð0; TÞ;

dujt¼0 ¼ 0;

(
ð3:1Þ

� @u�
@t � ðF

0
uðu; kÞÞ

�u� ¼ �C�V2ðCdu� n2Þ; t 2 ð0; TÞ;

u�jt¼T ¼ 0;

(
ð3:2Þ

V1ðdk� n1Þ � ðF 0kðu; kÞÞ
�u� ¼ 0: ð3:3Þ
Note that ~u ¼ �uþ sdu; u ¼ �uþ du; ~k ¼ �kþ sdk; k ¼ �kþ dk. The system (3.1)–(3.3) may be written in the form:
@du
@t � F 0uð �u; �kÞdu ¼ F 0kð �u; �kÞdkþ n3; t 2 ð0; TÞ;

dujt¼0 ¼ 0;

(
ð3:4Þ

� @u�
@t � ðF

0
uð �u; �kÞÞ

�u� ¼ �C�V2ðCdu� n2Þ þ n4; t 2 ð0; TÞ;

u�jt¼T ¼ 0;

(
ð3:5Þ

V1ðdk� n1Þ � ðF 0kð�u; �kÞÞ
�u� ¼ n5; ð3:6Þ
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where
n3 ¼ ½F 0uð ~u; ~kÞ � F 0uð �u; �kÞ�duþ ½F
0
kð~u; ~kÞ � F 0kð�u; �kÞ�dk;

n4 ¼ ½ðF 0uðu; kÞÞ
� � ðF 0uð �u; �kÞÞ

��u�; n5 ¼ ½ðF 0kðu; kÞÞ
� � ðF 0kð�u; �kÞÞ

��u�:
For fixed niði ¼ 1;2;3;4;5Þ, excluding du and u� from (3.4)–(3.6), we derive a single equation for dk (see (3.17) below). Let us
introduce the operator H : Yp ! Yp defined by the successive solutions of the following problems:
@w
@t � F 0uð �u; �kÞw ¼ F 0kð�u; �kÞv ; t 2 ð0; TÞ;
wjt¼0 ¼ 0;

(
ð3:7Þ

� @w�

@t � ðF
0
uð �u; �kÞÞ

�w� ¼ �C�V2Cw; t 2 ð0; TÞ;
w�jt¼T ¼ 0;

(
ð3:8Þ

Hv ¼ V1v � ðF 0kð�u; �kÞÞ
�w�: ð3:9Þ
We show next that H is the Hessian of an auxiliary data assimilation problem based on the tangent linear model constraints.
Below we introduce four auxiliary operators R1;R2;R3;R4. Let R1 ¼ V1. Let us introduce the operator R2 : Yobs ! Yp acting on
the functions g 2 Yobs according to the formula
R2g ¼ ðF 0kð �u; �kÞÞ
�h�; ð3:10Þ
where h� is the solution to the adjoint problem
� @h�

@t � ðF
0
uð �u; �kÞÞ

�h� ¼ C�V2g; t 2 ð0; TÞ;
h�jt¼T ¼ 0:

(
ð3:11Þ
The operator R3 : Y ! Yp is defined on the functions q 2 Y as follows:
@h1
@t � F 0uð �u; �kÞh1 ¼ q; t 2 ð0; TÞ;
h1jt¼0 ¼ 0;

(
ð3:12Þ

� @h�1
@t � ðF

0
uð�u; �kÞÞ

�h�1 ¼ �C�V2Ch1; t 2 ð0; TÞ;
h�1jt¼T ¼ 0;

(
ð3:13Þ

R3q ¼ ðF 0kð�u; �kÞÞ
�h�1: ð3:14Þ
The operator R4 : Y ! Yp is defined on the functions q 2 Y as
� @h�2
@t � ðF

0
uð�u; �kÞÞ

�h�2 ¼ q; t 2 ð0; TÞ;
h�2jt¼T ¼ 0;

(
ð3:15Þ

R4q ¼ ðF 0kð�u; �kÞÞ
�h�2: ð3:16Þ
From (3.7)–(3.16) we conclude that the system (3.4)–(3.6) is equivalent to the single equation for dk:
Hdk ¼ R1n1 þ R2n2 þ R3n3 þ R4n4 þ n5: ð3:17Þ
Each operator Ri defines the contribution of the corresponding error ni into the right-hand-side of the error Eq. (3.17). This is
the exact equation for dk. Under the hypothesis that H is invertible, we get
dk ¼ T1n1 þ T2n2 þ T3n3 þ T4n4 þ T5n5; ð3:18Þ
where Ti ¼ H�1Ri; i ¼ 1;2;3;4; T5 ¼ H�1; T1 : Yp ! Yp; T2 : Yobs ! Yp; T3; T4 : Y ! Yp.
The operators Tiði ¼ 1;2;3;4;5Þ are bounded, because the operators Ri and the inverse Hessian H�1 are supposed to be

bounded. Each operator Ti can be regarded as an error transfer operator which relates the corresponding error ni to the opti-
mal solution error dk.

Let us note that the functions u; k; ~u; ~k in 3.1, 3.2 and 3.3 depend on n1; n2, so as a result, the terms T3n3; T4n4; T5n5 also
depend nonlinearly on n1; n2, and it is not possible to represent dk through n1; n2 in an explicit form. To derive from (3.18) the
covariance operator of dk, we need to introduce some approximation of (3.18). Since ~u ¼ �uþ sdu; u ¼ �uþ du; ~k ¼ �kþ
sdk; k ¼ �kþ dk, we assume that
T3n3 � 0; T4n4 � 0; T5n5 � 0; ð3:19Þ
then (3.18) reduces to
dk � T1n1 þ T2n2; ð3:20Þ
which is equivalent to the system:
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@du
@t � F 0uð �u; �kÞdu ¼ F 0kð �u; �kÞdk; t 2 ð0; TÞ;
dujt¼0 ¼ 0;

(
ð3:21Þ

� @u�
@t � ðF

0
uð �u; �kÞÞ

�u� ¼ �C�V2ðCdu� n2Þ; t 2 ð0; TÞ;
u�jt¼T ¼ 0;

(
ð3:22Þ

V1ðdk� n1Þ � ðF 0kð�u; �kÞÞ
�u� ¼ 0: ð3:23Þ
Taking into account the definition of n3; n4; n5; it can be seen that the assumption (3.19) is equivalent to the first-order
approximation of the Taylor–Lagrange formula under the hypothesis that F is twice continuously Frechet differentiable
[13]. Using this formula, the errors n3; n4 and n5, may be expressed through the second derivatives of F, and the values
of the norms of T3n3; T4n4; T5n5 can be estimated, thus giving the possibility that the linearization error can be
assessed.

For fixed �k; �u, the problem (3.21)–(3.23) is the necessary optimality condition to the following DA problem: find dk and
du such that
@du
@t � F 0uð �u; �kÞdu ¼ F 0kð �u; �kÞdk; t 2 ð0; TÞ;
dujt¼0 ¼ 0;

S1ðdkÞ ¼ inf
v2Yp

S1ðvÞ;

8>>><>>>: ð3:24Þ
where
S1ðdkÞ ¼ 1
2
ðV1ðdk� n1Þ; dk� n1ÞYp

þ 1
2
ðV2ðCdu� n2Þ; Cdu� n2ÞYobs

: ð3:25Þ
The Hessian H of the functional (3.25) is defined on v 2 Yp by (3.7)–(3.9). Note that for n2 ¼ 0 the operator H coincides with
the Hessian H of the original nonlinear DA problem on the exact solution �k. The Hessian H acts in Yp as a self-adjoint oper-
ator with domain of definition DðHÞ ¼ Yp. Moreover, because of the properties of V1;V2, the operator H is always positive
definite, and hence invertible.

The derivation here follows the reasoning of [6], where the initialization problem was considered. However, here the
optimality system and, subsequently, definition of the Hessian H (via differential problems) are different from [6]. In
particular, they involve the adjoints to the Frechet derivatives of F both with respect to the solution u and the param-
eter k.

4. Covariance operator as the inverse Hessian

4.1. General case

Consider the error Eq. (3.20), where Ti ¼ H�1Ri; i ¼ 1;2; T1 : Yp ! Yp; T2 : Yobs ! Yp. Below we suppose that the errors
n1; n2 are normally distributed, unbiased, and mutually uncorrelated. Let us denote by Vdk the covariance operator
Vdk� ¼ E½ð�; dkÞYp

dk�, and by Vni
the covariance operator of the corresponding error ni; i ¼ 1;2, i.e. Vn1 � ¼E½ð�; n1ÞYp

n1�;
Vn2 � ¼ E½ð�; n2ÞYobs

n2�, where E is the expectation. For V1 and V2 in (2.2), we take V1 ¼ V�1
n1
; V2 ¼ V�1

n2
. From (3.20) we get
Vdk � V :¼ T1Vn1 T�1 þ T2Vn2 T�2: ð4:1Þ
To find the operator V, we need to construct the operators TiVni
T�i ; i ¼ 1;2.

Consider the operator T1Vn1 T�1. Since T1 ¼ H�1R1, we have T1Vn1 T�1 ¼ H�1R1Vn1 R1H�1. Moreover, if V1 ¼ V�1
n1

, then
T1Vn1 T�1 ¼ H�1R1H�1: ð4:2Þ
Consider the operator T2Vn2 T�2. Since T2 ¼ H�1R2, then
T2Vn2 T�2 ¼ H�1R2Vn2 R�2H�1:
To determine R�2, consider the inner product ðR2g; pÞYp
; g 2 Yobs; p 2 Yp. From (3.10) and (3.11),
ðR2g;pÞYp
¼ ððF 0kð�u; �kÞÞ

�h�;pÞYp
¼ ðC�V2g;/ÞY ¼ ðg;R

�
2pÞYobs

;

where R�2p ¼ V2C/, and / is the solution to the problem
@/
@t � F 0uð �u; �kÞ/ ¼ F 0kð�u; �kÞp; t 2 ð0; TÞ;
/jt¼0 ¼ 0:

(
ð4:3Þ
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Thus, the operator T2Vn2 T�2 is defined by successive solutions of the following problems (for a given v 2 Yp):
Hp ¼ v ; ð4:4Þ
@/
@t � F 0uð �u; �kÞ/ ¼ F 0kð�u; �kÞp; t 2 ð0; TÞ;

/jt¼0 ¼ 0;

(
ð4:5Þ

� @h�

@t � ðF
0
uð �u; �kÞÞ

�h� ¼ C�V2Vn2 V2C/; t 2 ð0; TÞ

h�jt¼T ¼ 0;

(
ð4:6Þ

Hw ¼ ðF 0kð �u; �kÞÞ
�h�; ð4:7Þ
then
T2Vn2 T�2v ¼ w: ð4:8Þ
If V2 ¼ V�1
n2

, then C�V2Vn2 V2C ¼ C�V2C and from (4.6) and (4.7) we obtain that
ðF 0kð �u; �kÞÞ
�h� ¼ Hp� R1p;
where H is the Hessian defined by 3.7, 3.8 and 3.9. From the definition of R2, we then get
R2Vn2 R�2 ¼ H � R1
and
T2Vn2 T�2 ¼ H�1R2Vn2 R�2H�1 ¼ H�1ðH � R1ÞH�1: ð4:9Þ
From (4.2) and (4.9) the result for V follows:
V ¼ T1Vn1 T�1 þ T2Vn2 T�2 ¼ H�1HH�1 ¼ H�1; ð4:10Þ
i.e. the covariance operator Vdk is approximately the inverse Hessian. By this reason we refer to V as the H-covariance.
Therefore, for the parameter estimation problem we obtain the same result as for the initialization (initial-value control)

problem. It means that the numerical algorithm for computing the covariance matrix presented in [6] can be used in the case
under consideration. Below the theory developed is illustrated by the examples given for the 1D convection–diffusion model.

4.2. Diffusion coefficient estimation

Let us consider the following evolution model:
@u
@t ¼ Fðu; kÞ þ f ; t 2 ð0; TÞ; x 2 ð0;1Þ;

ujt¼0 ¼ u;

�k @u
@x jx¼0 ¼ 0; k @u

@x jx¼1 ¼ 0;

8>><>>: ð4:11Þ
where Fðu; kÞ is the 1D convection–diffusion operator as follows:
Fðu; kÞ ¼ � @ðwuÞ
@x

þ @

@x
k
@u
@x

� �
:

Above, k ¼ kðxÞ is the unknown diffusion coefficient, u ¼ uðxÞ, w ¼ wðt; xÞ and f ¼ f ðt; xÞ are prescribed functions. Consider
the functional SðkÞ defined by (2.2) with Yp ¼ X ¼ L2ð0;1Þ, where k ¼ k. The DA problem is as follows: find the functions
k ¼ kðxÞ and u ¼ uðt; xÞ such that they satisfy (4.11), and on the set of solutions to (4.11), the functional SðkÞ takes the min-
imum value. The space Yobs and the corresponding observation term are the same as in (2.2). Note that Yobs can be the whole
space Y ¼ L2ð0; T; XÞ, or its subspace, and depends on the choice of the observation operator C (related to the observation
scheme). The details of specific observation schemes used in numerical experiments are discussed in Section 6.

The DA problem stated above has the same form as (2.3), therefore all results presented in Section 4.1 are directly appli-
cable. Let us also notice that even though the evolution model (4.11) is linear in u (k does not depend on u), the DA problem
is nonlinear, because the operator Fðu; kÞ is nonlinear.

The gradient of the functional S is defined by (2.4), where / is the solution to (2.5) satisfying the homogeneous boundary
conditions:
@/
@x
jx¼0 ¼

@/
@x
jx¼1 ¼ 0;
and the operators F 0uðu; kÞ; F
0
kðu; kÞ are defined by
F 0uðu; kÞ/ ¼ �
@ðw/Þ
@x

þ @

@x
k
@/
@x

� �
; F 0kðu; kÞv ¼

@

@x
v @u
@x

� �
: ð4:12Þ
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Introducing the adjoint problem (2.6) with
ðF 0uðu; kÞÞ
�u� ¼ w

@u�

@x
þ @

@x
k
@u�

@x

� �
; ð4:13Þ
and boundary conditions
wu� þ kðxÞ @u
�

@x
¼ 0; x ¼ 0; x ¼ 1;
we get
S0ðkÞ ¼ V1ðk� kbÞ þ
Z T

0

@u
@x

@u�

@x
dt; ð4:14Þ
and the optimality system 2.8, 2.9 and 2.10 is valid with
ðF 0kðu; kÞÞ
�u� ¼ �

Z T

0

@u
@x

@u�

@x
dt: ð4:15Þ
Due to (4.10), the covariance operator is approximately the inverse Hessian. The definition of the Hessian H by 3.7, 3.8 and
3.9 involves the operators F 0uðu; kÞ; F 0kðu; kÞ; ðF

0
uðu; kÞÞ

�; ðF 0kðu; kÞÞ
� defined by (4.12)–(4.14) and (4.15).

4.3. Boundary flux estimation

Let us consider the following evolution model:
@u
@t ¼ FðuÞ þ f ; t 2 ð0; TÞ; x 2 ð0;1Þ;
ujt¼0 ¼ u;

�kðuÞ @u
@x jx¼0 ¼ u1; kðuÞ @u

@x jx¼1 ¼ u2;

8><>: ð4:16Þ
where FðuÞ is the 1D nonlinear convection–diffusion operator as follows:
FðuÞ ¼ � @ðwuÞ
@x

þ @

@x
kðuÞ @u

@x

� �
:

Above, u1 and u2 are the unknown boundary fluxes, u ¼ uðxÞ; w ¼ wðt; xÞ and f ¼ f ðt; xÞ are prescribed functions, k ¼ kðuÞ is a
constitutive model for the diffusion coefficient. We consider the functional (2.2) in the form:
Sðu1;u2Þ ¼
1
2

X2

i¼1

V ðiÞ1 ðui � ui;bÞ;ui � ui;b

� �
L2ð0;TÞ

þ 1
2

V2ðCu�uobsÞ;Cu�uobsð ÞYobs
; ð4:17Þ
where ui;b 2 L2ð0; TÞ are prescribed functions (background), V ðiÞ1 : L2ð0; TÞ ! L2ð0; TÞ are symmetric positive definite opera-
tors, i ¼ 1;2. So, as a control space Yp (the space of parameters introduced above in Section 2), we can take
Yp ¼ L2ð0; TÞ � L2ð0; TÞ. Let V1 : L2ð0; TÞ � L2ð0; TÞ ! L2ð0; TÞ � L2ð0; TÞ be 2� 2 block-diagonal operator matrix with V ð1Þ1

and V ð2Þ1 as diagonal blocks. The DA problem can now be formulated as follows: find the functions
u1 ¼ u1ðtÞ; u2 ¼ u2ðtÞ; u ¼ uðt; xÞ such that they satisfy (4.16), and on the set of solutions to (4.16), the functional
Sðu1;u2Þ takes the minimum value.

Using a weak formulation of (4.16), the problem stated above may be written in the form (2.3) with k ¼ ðu1;u2ÞT 2 Yp, i.e.
boundary conditions become a part of the operator F definition. Therefore all results presented in Section 4.1 are valid in this
case. However, a weak formulation is not given here because it is somewhat bulky and would only complicate the presen-
tation. Instead, we present the auxiliary DA problem (and define all operators involved in this definition) in the usual way
with the boundary conditions formulated separately.

Below we assume the solution and the input functions in (4.16) and (4.17) to be regular enough. For v ¼ ðv1;v2ÞT the gra-
dient of the functional S is defined by
S0ðu1;u2Þv ¼
X2

i¼1

V ðiÞ1 ðui � ui;bÞ;v i

� �
L2ð0;TÞ

þ V2ðCu�uobsÞ;C/ð ÞYobs
;

where / is the solution to the problem:
@/
@t ¼ F 0ðuÞ/; t 2 ð0; TÞ; x 2 ð0;1Þ
/jt¼0 ¼ 0;
�kðuÞ @/

@x jx¼0 ¼ v1; kðuÞ @/
@x jx¼1 ¼ v2;

8><>: ð4:18Þ
and
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F 0ðuÞ/ ¼ � @ðw/Þ
@x

þ @
2ðkðuÞ/Þ
@x2 :
Using the adjoint problem
� @u�
@t � ðF

0ðuÞÞ�u� ¼ �C�V2ðCu�uobsÞ; t 2 ð0; TÞ
u�jt¼T ¼ 0;

wu� þ kðuÞ @u�
@x ¼ 0; x ¼ 0; x ¼ 1;

8><>: ð4:19Þ
with
ðF 0ðuÞÞ�u� ¼ w
@u�

@x
þ kðuÞ @

2u�

@x2 ;
we get the gradient of S as the vector-function:
S0ðu1;u2Þ ¼ ðV ð1Þ1 ðu1 � u1;bÞ �u�jx¼0;V
ð2Þ
1 ðu2 � u2;bÞ �u�jx¼1Þ

T
:

Then, the optimality system involves (4.16) and (4.19), and the necessary optimality condition S0ðu1;u2Þ ¼ 0.
As follows from the theory developed above, the covariance operator is approximately the inverse Hessian of the follow-

ing auxiliary DA problem: find du1; du2 and du such that
@du
@t � F 0ð �uÞdu ¼ 0; t 2 ð0; TÞ;
dujt¼0 ¼ 0;
�kð�uÞ @du

@x jx¼0 ¼ du1; kð �uÞ @du
@x jx¼1 ¼ du2;

S1ðdu1; du2Þ ¼ inf
v1 ;v2

S1ðv1;v2Þ;

8>>>><>>>>: ð4:20Þ
where
S1ðdu1; du2Þ ¼
1
2

X2

i¼1

V ðiÞ1 ðdui � ni;1Þ; dui � ni;1

� �
L2ð0;TÞ

þ 1
2

V2ðCdu� n2Þ;Cdu� n2ð ÞYobs
: ð4:21Þ
The Hessian H of the functional (4.21) is defined on v ¼ ðv1;v2ÞT by the successive solutions of the following problems:
@w
@t � F 0ð �uÞw ¼ 0; t 2 ð0; TÞ;
wjt¼0 ¼ 0;
�kð �uÞ @w

@x jx¼0 ¼ v1; kð �uÞ @w
@x jx¼1 ¼ v2;

8><>: ð4:22Þ

� @w�

@t � ðF
0ð �uÞÞ�w� ¼ �C�V2Cw; t 2 ð0; TÞ

w�jt¼T ¼ 0;

ww� þ kð �uÞ @w�
@x ¼ 0; x ¼ 0; x ¼ 1;

8><>: ð4:23Þ

Hv ¼ ðV ð1Þ1 v1 � w�jx¼0;V
ð2Þ
1 v2 � w�jx¼1Þ

T
: ð4:24Þ
5. Details of numerical implementation

5.1. Background error covariance matrix

In the numerical implementation we deal with a finite-dimensional problem; hence we will assume that all operators in
the cost functional are matrices. In order to define (2.2) and (3.25) one needs to specify the weights V1 ¼ V�1

n1
and V2 ¼ V�1

n2
,

where Vn1 is the background error covariance matrix and Vn2 is the observation error covariance matrix. Those two usually
represent our a priori knowledge on the stochastic properties of errors.

Let us denote by r2 ¼ diagðVÞ the H-variance, r2
b ¼ diagðVn1 Þ the background error variance, and r2

obs ¼ diagðVn2 Þ the
observation error variance. We assume that the observation error values are not correlated (‘white noise’), i.e. Vn2 is a diag-
onal matrix. However, the same assumption about Vn1 would be too simplistic. Therefore, the off-diagonal elements must be
introduced into Vn1 .

In solving ill-posed inverse problems [23] the solution is often considered to be a smooth function which belongs to a
Sobolev space of certain order, e.g. W2

2. Let us assume that kðzÞ is a one-dimensional function of z and introduce two weight
functions aðzÞ; cðzÞ to determine the weight matrix V1. We define a finite-difference analog of the norm in W2

2 as follows:
kkk2
W2;m

2
¼
Xm

i¼1

aiffiffiffiffici
p k2

i þ
Xm�1

i¼2

aiffiffiffiffici
p ciþ1=2ðkiþ1 � kiÞ � ci�1=2ðki � ki�1Þ

� �2
; ð5:1Þ
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where ki;ai; ci are discrete values of functions kðzÞ;aðzÞ; cðzÞ at points zi; i ¼ 1; . . . ;m and m is the number of discretization
nodes.

Let us assume that the background error n1 is a smooth function, i.e. it belongs to W2
2. We define the symmetric weight

matrix V1 such that for any vector k the following relation holds:
Fig. 1.
for all a
kT V1k ¼ kkk2
W2;m

2
: ð5:2Þ
For all ai > 0, the first term in (5.1) guarantees that the weight matrix V1 is positive definite and the background error covari-
ance matrix Vn1 ¼ V�1

1 can be computed. The last one is also symmetric and positive definite. It can be seen from numerical
experiments that if the norm is defined by (5.1), then aðzÞ controls mainly rbðzÞ and cðzÞ controls the correlation radius
rðz� z0Þ for a wide range of c 2 ð0:1;100Þ.

This result is illustrated in Fig. 1, where the left panel shows r2
bðzÞ for different functions aðzÞ, while cðzÞ is defined as

follows:
cðzÞ ¼ 0:2þ 9:8ð1� cosð4pzÞÞ: ð5:3Þ
The right panel shows the background error covariance matrix which looks identical for all functions aðzÞ considered: a ¼ 1,
a ¼ 1þ 3z, and a ¼ ffiffifficp . It can be seen in Fig. 1(left) that in the case a ¼ ffiffifficp , which corresponds to constant value of weights
ai=

ffiffiffiffici
p

in (5.1), the variance changes significantly with cðzÞ. However, if a is constant (case a ¼ 1), then the variance has a
nearly constant value, while the changes in the correlation radius are related mainly to cðzÞ. Therefore, the Eq. (5.1) can
be used to generate a family of covariances such that aðzÞ and cðzÞ define mainly the variance and the correlation radius,
respectively. Examples of the background error correlation functions, which correspond to different values of constant c
for a ¼ 1 are presented in Fig. 2, for the diffusion coefficient estimation problem (left) and for the boundary flux estimation
problem (right).

In the initial-value DA problem, the background function for the subsequent DA can be computed as an optimal solution
(analysis) evolved to the instant t ¼ T , i.e. as uðT; xÞ. Similarly, the background error covariance matrix could be computed as
the evolved analysis error covariance matrix. This is possible in principle, though difficult to implement for large-scale prob-
lems. For the boundary value estimation problem such a possibility does not generally exist. Therefore, the descriptions sim-
ilar to (5.1) might be a reasonable choice to define V1 or Vn1 . Let us note that this is a typical approach for certain applications
(for example, for inverse heat transfer problems [1]).
5.2. Preconditioning the Hessian

In [6] we have reported the numerical algorithm for computing the covariance matrix with the use of the quasi-Newton
BFGS method [4,16] for the case of the initial-value control problem. The same algorithm can be used in the case of param-
eter estimation.

Let us consider the problem (2.3). We approximate the covariance operator Vdk by the inverse Hessian of the auxiliary DA
problem (3.24) and (3.25). The inverse Hessian (or H-covariance) is computed as a collateral result of the BFGS iterations in
the course of solving the minimization problem (3.24) and (3.25). In order to obtain H�1 in the explicit form, the sequence of
the BFGS updates must be applied to the unity vectors. For particular details of this approach we refer to [6].
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Fig. 2. Scaled correlation function of the background error rðz� z0Þ for different constant c. Left – the diffusion coefficient estimation problem
ðL ¼ 1; m ¼ mx ¼ 200Þ. Right – the boundary flux estimation problem ðT ¼ 0:064; m ¼ mt ¼ 64Þ.
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The process of building the inverse Hessian by the BFGS algorithm can be accelerated by using a preconditioning. Usually,
a preconditioning is aimed to accelerate the convergence rate of a minimization procedure. However, this is a different task.
For example, the minimization procedure may converge long before any sensible approximation of the inverse Hessian is
built. Here we assume that the preconditioned Hessian would have much fewer eigenvalues remote from 1 and, therefore,
require fewer quasi-Newton updates to be represented.

Since H is self-adjoint, we must consider a preconditioned Hessian in a symmetric form, for example:
eH ¼ ðB�1Þ�HB�1; ð5:4Þ
with some operator B : Yp ! Yp. We can prove that the operator eH is the Hessian of the following modified auxiliary DA
problem: find dk and du such that
@du
@t � F 0uð�u; �kÞdu ¼ F 0kð �u; �kÞB

�1dk; t 2 ð0; TÞ;
dujt¼0 ¼ 0;
S2ðdkÞ ¼ inf

v2Yp
S2ðvÞ;

8>><>>: ð5:5Þ
where
S2ðdkÞ ¼ 1
2
ðV1B�1ðdk� n1Þ;B�1ðdk� n1ÞÞYp

þ 1
2
ðV2ðCdu� n2Þ;Cdu� n2ÞYobs

: ð5:6Þ
Therefore, one may use the BFGS algorithm to solve the minimization problem (5.5) and (5.6) and find ðeHÞ�1. After that, hav-
ing ðeHÞ�1, one can easily recover H�1 using the formula
H�1 ¼ B�1ðeHÞ�1ðB�1Þ�: ð5:7Þ
For the boundary flux estimation problem (Section 4.3) the modified auxiliary problem (5.5) and (5.6) reads as follows: find
du1; du2 and du such that
@du
@t � F 0ð �uÞdu ¼ 0; t 2 ð0; TÞ
dujt¼0 ¼ 0;

�kð�uÞ @du
@x jx¼0 ¼ B�1

1 du1; kð�uÞ @du
@x jx¼1 ¼ B�1

2 du2;

S2ðdu1; du2Þ ¼ inf
v1 ;v2

S2ðv1;v2Þ;

8>>>>><>>>>>:
ð5:8Þ
where
S2ðdu1; du2Þ ¼
1
2

X2

i¼1

V ðiÞ1 B�1
i ðdui � ni;1Þ;B�1

i ðdui � ni;1Þ
� �

L2ð0;TÞ
þ 1

2
V2ðCdu� n2Þ;Cdu� n2ð ÞYobs

: ð5:9Þ
One can recover H�1 by the formula (5.7), where B is 2� 2 block-diagonal matrix with B1 and B2 as blocks.
An important issue is how to construct the operator B�1. Usually one tries to take B�1 in such a way that the spectrum of

the preconditioned Hessian eH ¼ ðB�1Þ�HB�1 is clustered around 1. This means that the majority of eigenvalues of eH are equal
or close to 1. Theoretically, the best choice of B�1 is such that eH is the identity operator. Thus, one should achieve
B�1ðB�1Þ� � H�1 or B�B � H. One possibility to construct B�1 is to consider an approximation Ha � H. If we compute the Chole-
sky factorization for H�1

a in the form H�1
a ¼ LL�, then we can take B�1 ¼ L. Sometimes, it is beneficial to compute the Cholesky

factorization for Ha itself, i.e. Ha ¼ LL�, then we can take B�1 ¼ ðL�Þ�1.
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In this paper we assume that Ha ¼ V1. This choice of Ha corresponds to the ‘first level’ preconditioning commonly used in
variational DA [3,5]. In the 1D case, the weight matrix V1 defined by (5.1) and (5.2) is a five-diagonal banded matrix. For a
given V1 we compute the Cholesky factorization V1 ¼ LL�, where L is the lower triangular factor of V1. Then, the product B�1v
(required in Eqs. 5.5, 5.6 and 5.7) can be obtained by the backward substitution sweep involving L�, while ðB�1Þ�v (required
in (5.7)) – by the forward substitution sweep involving L. With this arrangement the matrix Vn1 is never computed. Other
possible approaches to Hessian preconditioning are considered in [5,24,26]. Let us emphasize that the development of an
efficient preconditioner would be the key implementation issue for the method proposed.
5.3. Additional implementation details

As a model for numerical implementation we consider the 1D convection–diffusion equation. We use the implicit time
discretization as follows
ui �ui�1

ht
þ @ðwuiÞ

@x
� @

@x
kðuiÞ @u

i

@x

� �
¼ 0; i 2 ð1; . . . ;mtÞ; x 2 ð0;1Þ; ð5:10Þ
where i ¼ 1; . . . ;mt is the time integration index, ht ¼ T=mt is a time step. The spatial operator is discretized on a uniform
mesh (hx ¼ 1=mx is the spatial discretization step, mx is the total number of mesh nodes) using the ‘power law’ first-order
scheme as described in [15].

When the boundary flux estimation problem is considered (Section 4.3), the model equation is nonlinear (k ¼ kðuÞ). In
this case for each time step we perform nonlinear iterations, assuming initially that kðuiÞ ¼ kðui�1Þ, and keep iterating until
(5.10) is satisfied (i.e. the norm of the left-hand side in (5.10) becomes smaller than a threshold �1 ¼ 10�12 ffiffiffiffiffiffi

mx
p

). For the
parameter estimation problem (Section 4.2) we assume that the diffusion coefficient does not depend on the solution u,
but is a function of x, i.e. k ¼ kðxÞ. Let us notice that even though the model equation becomes linear in this case, the param-
eter estimation problem remains nonlinear (that can be seen from (4.15)).

Let us note that the auxiliary DA problem (3.24) and (3.25) includes the TLM of the original evolution problem. In order to
solve the minimization problem (3.24) and (3.25) using the BFGS algorithm one also needs the adjoint model that computes
the gradient of (3.25) with respect to the unknown parameters. Both in [6] and in the present paper we use the TLM and
adjoint models generated by means of Automatic Differentiation (AD) [8]. The TLM and adjoint models produced in this
way are known as consistent models. We stress that the use of consistent models is essential to obtain the H-covariance.
However, if the TLM code is produced by means of AD, it could be difficult to separate manually the part of the code which
computes the solution of the original evolution problem and the part which computes the solution of the TLM. With this
arrangement the original nonlinear problem has to be solved as many times as the TLM whereas it should be solved only
once. Let us notice that for solving the auxiliary problem (3.24) and (3.25) the consistency between the TLM and the adjoint
models is all that is required. Therefore, the compromise approach would be: (a) derive analytically and separately imple-
ment the TLM, and (b) generate the adjoint model by means of AD, using the TLM source code as the input for the AD engine.

In numerical experiments, the H-covariance matrix V will be compared with the ensemble covariance matrix bV , obtained
by the fully nonlinear ensemble method. This method is presented in detail in [6]. Here we would only mention that this
method allows the covariance matrix to be estimated without any linearization involved, and therefore is considered for
the verification purpose. The ensemble size M ¼ 400 is being used in all ensemble computations presented in this paper. This
size has been chosen such that the sampling error is noticeably smaller (�10%) than the optimal solution error.
6. Numerical results

We mentioned already that DA allows the uncertainty in model parameters/controls to be reduced. The background error
covariance matrix Vn1 (a priori covariance matrix) is a measure of uncertainty in model parameters before DA. The variance
r2

b can be considered as the original uncertainty magnitude. The (optimal solution error) covariance matrix Vdk (a posteriori
covariance matrix) is a measure of uncertainty in the sought parameters after DA and the variance r2

dk is the uncertainty
magnitude after DA, respectively. Let us introduce the function
fðzÞ ¼ r2ðzÞ=r2
bðzÞ; z 2 ½0;1�; ð6:1Þ
where r2ðzÞ is the H-variance. The function f quantifies the ’usefulness’ of observation data in terms of reducing the original
uncertainty magnitude. Let us note that 0 < f < 1: f ! 1 means that the efficiency of DA decreases (i.e. the original uncer-
tainty is less and less affected), f ! 0 means that DA is increasingly efficient. Below, the results of most numerical exper-
iments are presented in terms of f. In addition to f obtained by the BFGS, we present f̂ which is obtained by the ensemble
method. These two must be in a proper agreement if the linearization error is small enough and the ensemble size M is suf-
ficiently large.
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6.1. Distributed coefficient estimation

Here we refer to the diffusion parameter estimation problem stated in Section 4.2. In this problem one tries to estimate
the unknown diffusion coefficient kðxÞ; x 2 ð0;1Þ using a set of incomplete observations of the field uðt; xÞwhich evolves from
the known initial state u. Let us note that the evolution Eq. (4.11) is now linear, however the parameter estimation problem
is always nonlinear. We consider two cases: the convection-dominated case ðw ¼ 10; k ¼ 0:01; Pe ¼ w=k ¼ 103), and the
pure diffusion case ðw ¼ 0; k ¼ 0:1Þ. In the first case the initial state is the step-function
u ¼
1; x 6 0:1
0; x > 0:1

�
;

in the second case it is defined by the formula
u ¼ 0:5ð1þ cosð4pxÞÞ: ð6:2Þ
The ‘true’ field �uðt; xÞ for both cases is presented in Fig. 3(left) and Fig. 3(right), respectively. In geophysics, the convection-
dominated problems are usual in meteorology and surface-water applications. For example, Fig. 3(left) may represent a heat
wave propagation. Even though the (eddy) diffusion could be relatively small, it is an important parameter that defines the
front dissipation rate. The diffusion-dominated problems arise in groundwater [20] and oil-reservoir modelling.

In order to compute the H-covariance V we solve the modified auxiliary DA problem (5.5) and (5.6) with k ¼ k by the BFGS
algorithm, then retrieve V ¼ H�1 using (5.7). The discretization parameters for the numerical model are: mx ¼ 200,
hx ¼ 0:05; mt ¼ 128; T ¼ 0:064; ht ¼ 0:005.

6.1.1. Convection-dominated evolution model
In this part we consider the observation scheme which consists of five sensors located in the middle of the computational

domain at the points x ¼ 0:4;0:45;0:5;0:55;0:6; the observation error variance is constant in x with robs ¼ 3� 10�4. Since
the diffusion coefficient is always positive, the function aðxÞ (which largely defines rbðxÞ) must be considered such that
3rbðxÞ < �kðxÞ; 8x. We chose aðxÞ to satisfy the condition 3rbðxÞ � �kðxÞ. This allows us to apply the largest possible back-
ground error n1, while keeping kb ¼ �kþ n1 positive (and therefore physically meaningful) in ensemble computations. This
is a limitation of the theory presented in this paper that results from the assumption of the Gaussian (i.e. symmetric) dis-
tribution of the background error and could be particularly noticeable for small �kðxÞ.

In the first example we consider �kðxÞ ¼ 0:01; w ¼ 10; cðxÞ ¼ 10, and aðxÞ ¼ 4� 104. The result obtained by the BFGS (the
function fðxÞ, (6.1)) is presented in Fig. 4(left) in bold solid line. One can see that the behaviour of f is relatively simple and
generally resembles the behaviour of the variance in the initial-value control problem ([6]). The minima of f are located in
the vicinity of sensors. Between the sensors f grows to a level which depends mainly on the background error correlation
radius controlled by cðxÞ. Outside the domain covered by sensors f grows approaching 1, even though there is an interme-
diate level of f < 1 in the upstream direction. For the same conditions we compute the ensemble f̂ (presented in the marked
line). One can notice that f̂ is in a good agreement with f obtained by the BFGS, particularly within the area where sensors
dominate the look of f. The H-covariance matrix V obtained by the BFGS and V̂ obtained by the ensemble method are pre-
sented in Fig. 5(left) and Fig. 5(right), respectively.

In order to compare cases with different kðxÞ we consider the following functions: kðxÞ ¼ 0:1; w ¼ 10; cðxÞ ¼ 10, and
aðxÞ ¼ 4� 102. The result obtained by the BFGS is presented in Fig. 4(left) in faint solid line. We note that now the structure
of f is even simpler than before and that the larger kðxÞ can be better estimated (with the same robs).

In the second example presented in Fig. 4(right) we compare f computed with cðxÞ ¼ 10 (in bold solid line) and with the
variable c defined by (5.3)(in faint solid line). One can notice a very significant difference between these cases. This example
underlines the crucial role of the background error correlation radius (controlled by c) in computing the covariance.
Fig. 3. -Field evolution for convection-dominated problem (left) and pure diffusion problem (right).
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Fig. 5. Diffusion coefficient estimation problem. Left – H-covariance. Right – ensemble covariance.
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Fig. 6. H-variances. Left – f for 2 observation schemes and f̂. Right – f for a single sensor versus f for a pair of sensors.
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6.1.2. Pure diffusion evolution model
In this part we refer to Fig. 6(left). We consider two observation schemes. Each scheme consists of six sensors located in

the middle of the spatial domain, however the sensors are located differently. In both cases the observation error variance is
constant in x with robs ¼ 5� 10�3. In the first case the sensors are evenly distributed (locations are shown by arrows marked
a), the corresponding fðxÞ is presented in faint solid line. In the second case the sensors are put in pairs (locations are shown



Fig. 7. Diffusion coefficient estimation problem. Left – H-covariance. Right – ensemble covariance.
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by arrows marked b), the result is presented in bold solid line. We notice that in the second case the function fðx ¼ 0:375Þ is
smaller by an order of magnitude than in the first case. For the second case we also present the ensemble f̂ by the marked
line. One can see a very good agreement between f and f̂, particularly in the area covered by sensors. For this case the H-
covariance V and the ensemble covariance bV are presented in Fig. 7(left) and Fig. 7(right), respectively.

In the case of pure diffusion the behaviour of f is more complex than in the convection-dominated case. This can be ex-
plained by considering the expression (4.14), for example. We notice that the function @u�=@x, which is responsible for deliv-
ering information from the sensors via the adjoint variable, is multiplied by @u=@x. Because of that, in the areas with small
field gradients the gradient of the cost function S0ðkÞ is dominated by the background term. Due to the symmetric nature of
the diffusion process, the extremum points in the initial state do not change their original location (see e.g. Fig. 3(right)), i.e.
the areas with small and big gradients remain at certain locations.

Below we refer to Fig. 6(right). Let us assume that the observatio